
© 2015 Prof. Dr. R. Manthey Temporal Information Systems 1Temporal Information Systems 1

SS 2015

Temporal Information Systems

„Data About Time“ –
Managing a History of the Application

Chapter 4

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 2

Valid Time

time

• In this chapter, we turn our attention to time-related information which
• is referring to events occuring and validity of facts in that part of the real world

reflected in the resp. database,
• is therefore kept in columns in the data part of each tuple (not in the history part),
• is thus inserted/modified by humans (or programs) „monitoring“ the resp. part of

the real world (not by „the system“, i.e., the DBMS).

• Columns of tables containing elements of temporal data types which refer to the real
world outside the DB are called in research valid time columns.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 3

Timestamping (1)

• The term „timestamping“ has been used just intuitively up till now and requires some
clarification.

• Up till now, a „timestamp“ always was a period value „attached to“ an entire fact in
order to record its period of validity in the database, e.g.:

• Here, the „object“ to be timestamped is a fact, the timestamp itself is a period value,
and the temporal status of the timestamp is transaction time:

We have a case of transaction time tuple timestamping with period granularity.

• However, there are other forms of timestamping imaginable, using
• valid time as status of the timestamp (rather than transaction time)
• instant granularity for the timestamp (rather than period)
• timestamping individual columns only (rather than the entire fact)

Student Class Signed_up Dropped Grade Exam Date From To

John 1203 11.11.2010 11.11.2010 14.2.2011

timestamped fact timestamp of that fact

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 4

Timestamping (2)

Presidency President Birthday From To Term

1 George Washington 22.2.1732 30.4.1789 4.3.1793 1

• In the presidency table, two forms of timestamping can be observed simultaneously:

• The tuple recording the first US presidency ever (covering columns Presidency,
President, Term) is timestamped according to its occurrence in the real world:

• The Birthday column could be interpreted as a valid time timestamp for the
value in column President – although doing so „stretches“ the idea of time-
stamping quite a bit:

Presidency President Birthday From To Term

1 George Washington 22.2.1732 30.4.1789 4.3.1793 1

timestamped
tuple

timestamped
attribute value

valid time period
tuple timestamp

valid time instant
attribute timestamp

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 5

Timestamping (3)

Student Class Signed_up Dropped Grade Exam Date From To

John 1203 11.11.2010 11.11.2010 14.2.2011

John 1203 11.11.2010 1,3 13.2.2011 14.2.2011

Jack 1203 19.11.2010 19.11.2010 2.1.2011

Jack 1203 19.11.2010 2.1.2011 2.1.2011

Tim 1203 21.11.2010 21.11.2010 20.3.2011

Tim 1203 21.11.2010 3,0 18.3.2011 20.3.2011 8.4.2011

• In the bi-temporal table Exams the two valid time columns Signed_up and Dropped
can be interpreted as valid time period timestamp for the facts consisting of columns
Student and Class stating who has registered for which class.

• If considering (Student, Class, Grade) as separate tuples recording which student took
an exam in which class, then Exam Date can be interpreted as a valid time tuple time-
stamp. Interpreting it as an attribute timestamp for attribute Grade is possible, too –
this seems to be particularly useful if two exams are possible per class.

valid time timestamps
(one period, one instant)

transaction time period
tuple timestamp

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 6

Events vs. States

• Instant timestamps correspond to events happening which are associated with the
timestamped object (i.e., fact or value) in some sense (e.g., „moment of creation“).
In this interpretation, events do not have duration, but happen instantaneously.

• Period timestamps are associated with timestamped objects in order to record how long
these objects have been in a particular state. Thus states of objects have duration – all
attributes of the object (which are recorded) are stable (not changed) while the object
is in the resp. state.

• When an object changes, a new state of that object is created. State changes are events,
delimiting the period during which the object is in that particular state. Thus, recording
just change events or full periods are two options for representing stateful objects.

• In natural language or in philosophy (and other branches of science) there is no common
agreement on the question, whether events can have duration, too (or are „by nature“
instantaneous) and whether states can be instantaneouos (or have duration „by nature“).

• Last not least: Not every temporal column of a table must be a timestamp!

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 7

On Events

„We think that the most important distinction among methods of managing
queryable data is the distinction between data about things and data about events.

Things are what exists; events are what happen.

Things are what change; events are the occasions on which they change.“

(from Johnston/Weis „Managing Time ...“, p. 37)

„Events are the occasions on which changes happen to persisting objects.
As events, they have two important features:

(i) they occur at a point in time, or sometimes last for a limited period of time;
and (ii) in either case, they do not change.

An event happens, and then it‘s over. Once it‘s over, that‘s it; it is frozen in time.“

(from Johnston/Weis „Managing Time ...“, p. 37)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 8

State vs. Event Tables

• In case of tuple timestamping, the type of the timestamp for each tuple decides whether
we keep history about this tuple in terms of states, or of events.

• If periods are used as tuple timestamps, we call the respective table a state table, if
instants are used we speak of an event table.

• The attribute state vs. event has to be further qualified by the time dimension to which
it applies, e.g., valid time (VT) state table, or transaction time (TT) event table.

• A bitemporal table can be a valid time event table and simultaneously a transaction time
state table. All four combinations are possible analogously.

• The most frequent form of usage of timestamping is the state table style, i.e., recording
periods of validity of the recorded fact in reality (VT), resp. periods of unchanged con-
tainment of the recorded tuple in the database (TT).

• An important special case of a state table is called a snapshot table. Here, all period time-
stamps are „degenerate“ in that they represent instants (periods of duration 1), and all
tuples have the same timestamp: What was true (resp., known) at that instant?

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 9

Managing Valid Time State Tables: Principles

• In this (short) chapter, we will first look at those aspects of data management that
are different if dealing with valid rather than transaction time.

• For the rest of the chapter, we will look at state tables only (as in chapter 3 before),
but this time pairs of columns representing periods will be interpreted as valid time
timestamps.

• Again, we will distinguish the data part of a row from its history part. The history part
of a row will refer to periods in the application domain of the resp. database, however.

• After discussing VT-specific issues from the perspective of „old“ SQL (using the termi-
nology of temporal DB research), we will again turn to SQL:2011 and introduce the
novel syntactic features of the latest standard.

• Querying a valid time table works like querying a transaction time table, unless using
SQL:2011, of course. If using „ordinary“ SQL, no difference between temporal and
non-temporal columns exists wrt querying.

• Current modifications are treated similarly to the TT case. However, for VT tables
(past and) sequenced modifications become meaningful and have to be discussed.

© 2015 Prof. Dr. R. Manthey 10Temporal Information Systems 1010

Sequenced Insertions

• Information about events and states in the application area represented by the data in
the DB are relying on communication with the „real world“. Humans have to take
care of „translating“ the contents of such communication to the DB. Information about
past events in the application world may thus be erroneous or (strongly) delayed!

• Sequenced insertions are physically realized similar to current insertions, e.g.:

• Note that such an insertion will be applicable only if there is no other assignment
of this position to this employee during any instant of the respective period, if a
temporal primary key is active on INCUMBENTS.

• Past insertions are treated similarly with the period „degenerating“ to an instant.

• Next let us try to express a non-temporal (logical) deletion for the entire year 1997
in retrospect, i.e., turn it into a sequenced deletion.

INSERT INTO INCUMBENTS
VALUES (111223333, 999071, DATE '1997-01-01', DATE '1998-01-01')

© 2015 Prof. Dr. R. Manthey 11Temporal Information Systems 1111

Sequenced Deletions (1)

DELETE FROM INCUMBENTS
WHERE SSN = 111223333

AND PCN = 999071

[)
'1998-01-01''1997-01-01'

As discussed earlier, there are again four cases to be considered, reflecting how the
period of applicability of the deletion (here: all of 1997) and the
period of validity of the row to be deleted

are related to each other:

deletion period

1. The validity period „covers“ the deletion period (during, starts, finishes, equals).
2. The validity period overlaps the deletion period (Allen overlaps).
3. The deletion period overlaps the validity period.
4. The deletion period „covers“ the validity period.

In each of the cases, a different physical implementation of the logical sequenced deletion
is necessary.

logical deletion
How do the physical modifications implementing the
sequenced version look like?

© 2015 Prof. Dr. R. Manthey 12Temporal Information Systems 1212

Sequenced Deletions (2)

INSERT INTO INCUMBENTS
SELECT SSN, PCN, DATE '1998-01-01', END_DATE
FROM INCUMBENTS
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < DATE '1997-01-01'
AND END_DATE > DATE '1998-01-01'

1. The validity period „covers“ the deletion period (during-1, starts-1, finishes-1).

[)deletion period

[)
validity period

'1998-01-01''1997-01-01'

UPDATE INCUMBENTS
SET END_DATE = DATE '1997-01-01'
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < DATE '1997-01-01'
AND END_DATE > DATE '1998-01-01'

(This formulation applies to the
during case only, cases where
period limits coincide to be
considered analogously.)

© 2015 Prof. Dr. R. Manthey 13Temporal Information Systems 1313

Sequenced Deletions (2a)

INSERT INTO INCUMBENTS
SELECT SSN, PCN, DATE '1998-01-01', END_DATE
FROM INCUMBENTS
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < DATE '1997-01-01'
AND END_DATE > DATE '1998-01-01'

[)deletion period

[)
validity period

'1998-01-01''1997-01-01'

UPDATE INCUMBENTS
SET END_DATE = DATE '1997-01-01'
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < DATE '1997-01-01'
AND END_DATE > DATE '1998-01-01'

• Attention! When dealing with valid time, „the database does forget“ deleted data,
as they are considered the result of erroneous information about the real happenings
in the application domain.

• The part of the validity period of the „old“ row covered by the deletion period is lost!

© 2015 Prof. Dr. R. Manthey 14Temporal Information Systems 1414

Sequenced Deletions (3)

UPDATE INCUMBENTS
SET END_DATE = DATE '1997-01-01'
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < DATE '1997-01-01'
AND END_DATE > DATE '1997-01-01‘
AND END_DATE < DATE '1998-01-01'

2. The validity period overlaps the deletion period (Allen overlaps).

[)deletion period

[)
validity period

'1998-01-01''1997-01-01'

© 2015 Prof. Dr. R. Manthey 15Temporal Information Systems 1515

Sequenced Deletions (4)

UPDATE INCUMBENTS
SET START_DATE = DATE '1998-01-01'
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < DATE '1998-01-01'
AND START_DATE >= DATE '1997-01-01'
AND END_DATE > DATE '1998-01-01'

3. The deletion period overlaps the validity period.

[)deletion period

[)
validity period

'1998-01-01''1997-01-01'

© 2015 Prof. Dr. R. Manthey 16Temporal Information Systems 1616

Sequenced Deletions (5)

DELETE FROM INCUMBENTS
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE > DATE '1997-01-01'
AND END_DATE < DATE '1998-01-01'

4. The deletion period „covers“ the validity period.

[)

deletion period[)

validity period

'1998-01-01''1997-01-01'

(Again, we just discuss the during variant here.)

© 2015 Prof. Dr. R. Manthey 17Temporal Information Systems 17

[)

Sequenced Updates (1)

[)update period

[)
validity period

'1998-01-01''1997-01-01'

[)
'1998-01-01''1997-01-01'

update period
UPDATE INCUMBENTS
SET PCN = 908739
WHERE SSN = 111223333

Next consider applying an update (promotion of an employee) retroactively for a particular
period in the past only, e.g., again for the year 1997:

logical update
How do the physical modifications implementing the
sequenced version look like?

[)update period

[)
validity period

'1998-01-01''1997-01-01'

[)update period

[)
validity period

'1998-01-01''1997-01-01'
[)

update period

validity period

'1998-01-01''1997-01-01'

Again, the same four cases have to be distinguished as for sequenced deletions before:

© 2015 Prof. Dr. R. Manthey 18Temporal Information Systems 1818

Sequenced Updates (2)

INSERT INTO INCUMBENTS
SELECT SSN, PCN, START_DATE, DATE '1997-01-01',
FROM INCUMBENTS
WHERE SSN = 111223333

AND PCN = 908739
AND START_DATE < DATE '1997-01-01'
AND END_DATE > DATE '1998-01-01'

[)update period

[)
validity period

'1998-01-01''1997-01-01'

UPDATE INCUMBENTS
SET PCN=908739
WHERE SSN = 111223333

AND START_DATE < DATE '1998-01-01'
AND END_DATE > DATE '1997-01-01'

Similar insertion needed
for retaining old position
for rest of validity period

Retains old position
for first part of
validity period

Only case 1 discussed here – similar considerations needed for cases 2 to 4:

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 19

Valid Time in SQL:2011

Again, the following slides on SQL:2011
have been taken from this tutorial available
online.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 20

SQL:2011 Terminology: Reminder

Research Terminology SQL:2011 Terminology
valid time application time
transaction time system time

timestamping versioning

valid time table application time period table
transaction time table system-versioned table
bitemporal table system-versioned

application time period table

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 21

SQL:2011: Application Time Period Tables

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 22

SQL:2011: Application Time Period Tables (1)

Creating an application time period table:

(example from K. Kulkarni „Temporal Features in SQL Standard“)

The PERIOD FOR clause contains an implicit constraint (enforced by the DBMS),
CHECK start_date < end_date. The same holds for system time.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 23

SQL:2011: Application Time Period Tables (2)

Inserting rows into an application time period table – period values provided by users:

(example from K. Kulkarni „Temporal Features in SQL Standard“)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 24

SQL:2011: Application Time Period Tables (3)

Timestamp unchanged!

Updating fields in an application time period table – timestamps not affected:

(example from K. Kulkarni „Temporal Features in SQL Standard“)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 25

SQL:2011: Application Time Period Tables (4)

Updating fields in an application time period table – timestamps updated too:

Automatic „row splitting“ –
a sequenced update!

(example from K. Kulkarni „Temporal Features in SQL Standard“)

5

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 26

SQL:2011: Application Time Period Tables (5)

Deleting rows from an application
time period table – a sequenced
deletion „cutting“ out one month from
history

(example from K. Kulkarni „Temporal Features in SQL Standard“)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 27

SQL:2011: Application Time Period Tables (6)

Deleting rows from an application
time period table – a nonsequenced
deletion eliminating all rows about
John

(example from K. Kulkarni „Temporal Features in SQL Standard“)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 28

SQL:2011: Application Time Period Tables (7)

Querying an application time period table – an application time timeslice (past) query:

(example from K. Kulkarni „Temporal Features in SQL Standard“)

end_date

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 29

SQL:2011: Application Time Period Tables (8)

Querying an application time period table – an application time current query:

(example from K. Kulkarni „Temporal Features in SQL Standard“)

end_date

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 30

SQL:2011: Application Time Period Tables (9)

Querying an application time period table – an application time sequenced query:

(example from K. Kulkarni „Temporal Features in SQL Standard“)

end_date

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 31

SQL:2011: Application Time Period vs. System-Versioned Tables

Declaring a system-versioned table

Declaring an application time
period table

© 2015 Prof. Dr. R. Manthey

SQL:2011: Coming Close to Allen‘s Operators

Temporal Information Systems 32

• In order to „simplify“ the formulation of conditions involving time-valued attributes
in SQL, new operators and keywords have been introduced in SQL:2011 …

• … coming close to the Allen operators for comparing periods, without following
Allen‘s terminology

• … extending the already existing SQL operator OVERLAPS
• … introducing a new style for expressing period expressions

(without introducing a new datatype PERIOD).

• PRECEDES corresponds to Allen‘s before
IMMEDIATELY PRECEDES corresponds to Allen‘s meets
EQUALS corresponds to Allen‘s equals
CONTAINS corresponds to Allen‘s during

(special form for periods with just one instant: no period notation necessary)
IMMEDIATELY SUCCEEDS corresponds to Allen‘s meets-1

SUCCEEDS corresponds to Allen‘s before-1

• OVERLAPS retains its previously established meaning.

• Bracketed operands of these operators are now pre-fixed by the keyword PERIOD,
e.g., PERIOD (CURRENT_DATE, CURRENT_DATE + 3 DAY)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 33

SQL:2011: Application Time Period vs. System-Versioned Tables

Declaring a system-versioned table

Declaring an application time
period table

© 2015 Prof. Dr. R. Manthey

Modifications for Application Time: Summary

Temporal Information Systems 34

UPDATE employees
FOR PORTION OF emp_period
FROM DATE ‘1996-03-01’ TO DATE ‘1996-07-01’

SET dept_id = ‘M12’’
WHERE emp_name = ‘John’

DELETE FROM employees
FOR PORTION OF emp_period
FROM DATE ‘1996-08-01’ TO DATE ‘1996-09-01’

WHERE emp_name = ‘John’

INSERT INTO employees (emp_name, dept_id, start_date, end_date)
VALUES (‘John’, ’J13’, DATE ‘1996-11-15’, DATE ‘1997-11-15’’),

New syntax just for application time UPDATE / DELETE:
FOR PORTION OF ….

Application Time timestamps to be explicitly given at row insertion:

© 2015 Prof. Dr. R. Manthey

Modifications for System Time: Summary

Temporal Information Systems 35

INSERT INTO emp (emp_name, dept_id)
VALUES (‘John’, ’J13’)

UPDATE emp
SET dept_id = ‘M24’’
WHERE emp_name = ‘John’

DELETE FROM emp
WHERE emp_name = ‘Tracy’

No new syntax for any system time modification,
but automated modification of system time values

System time values initiated
by the DBMS.

Physical modifications of system time
attributes done automatically by DBMS!
Syntax of commands represents logical
modifications only.

© 2015 Prof. Dr. R. Manthey

Queries for Application Time: Summary

Temporal Information Systems 36

SELECT dept_id
FROM employees
WHERE emp_name = ‘John’

AND start_date <= DATE ‘1997-12-01’
AND end_date > DATE ‘1997-12-01’ ;

No new syntax for any application time query!

Temporal condition to be explicitly included
into WHERE-part.

But: New period comparison operators can be used (sometimes simplifying effort),
e.g., using overloaded CONTAINS for time-slice queries and period name for
application time PERIOD declarations.

… AND emp_period CONTAINS DATE ‘1997-12-01’ ;

© 2015 Prof. Dr. R. Manthey

Queries for System Time: Summary

Temporal Information Systems 37

SELECT Dept
FROM employees

FOR SYSTEM_TIME AS OF DATE ‘1997-12-01’
WHERE emp_name = ‘John’

SELECT count(distinct dept_id)
FROM employees

FOR SYSTEM_TIME FROM DATE ‘1996-01-01’ TO CURRENT_DATE
WHERE emp_name = ‘John’

time-slice (past) query:

sequenced query:

New syntax for all system time queries:
FOR SYSTEM_TIME ….

AS OF

FROM … TO ….

© 2015 Prof. Dr. R. Manthey

SQL:2011: Queries and Modifications in Comparison

Temporal Information Systems 38

System time

Application time

Modifications Queries

New syntax
(AS OF, FROM .. TO ..)

No new syntax
(but new period comparison
operators can be used)

No new syntax
(but automated management of
system time period values)

New syntax
just for UPDATE/DELETE)

(FOR PORTION OF ..)

